avangard-pressa.ru

Белые и красные мионы млекопитающих - Биология

Свойство Белые мионы Красные мионы цвет белый красный диаметр большой небольшой миоглобин мало много митохондрии мало много липиды мало много гликоген много мало кровоснабжение слабое сильное сокращение сильное и быстрое слабое и медленное

Сердечная мышечная ткань

Из сердечной мышечной ткани состоит только один орган – сердечная мышца, или миокард. Она образована тесно связанными между собой клетками – кардиомиоцитами, которые располагаются цепочками друг за другом. Различают рабочие, проводящие и секреторные кардиомиоциты.

Наиболее многочисленными являются в миокарде рабочие (сократительные) кардиомиоциты.Они имеют цилиндрическую форму, причем в отличие от мионов ядра в них расположены в центре, а миофибриллы смещены на периферию. Миофибриллы сердечной мышечной ткани обладают поперечной исчерченностью, их строение такое же, как в мионах скелетной мускулатуры. Рабочие кардиомиоциты отличаются высоким содержанием митохондрий, кристы которых располагаются вдоль оси и могут ветвиться. Саркоплазматическая сеть развита слабее, чем в мионах, она имеет вид каналов и цистерн, ориентированных вдоль миофибрилл.

Следующие друг за другом кардиомиоциты прочно связаны между собой при помощивставочного диска (вставочной полоски). В области вставочного диска граница клеток неровная, с многочисленными выступами. Между плазмолеммами соседних клеток имеется пространство шириной 20-30 нм. С внутренней стороны клетки утолщенный участок плазмолеммы сливается с Z-полоской миофибриллы. Совпадение Z-полоски с границей клетки в области вставочного диска позволяет сохранить последовательность саркомеров в миофибриллах соседних клеток и объединить их сократительные структуры в единое целое.

Кроме вставочных дисков кардиомиоциты соединяются между собой с помощью десмосом, а также плотных и щелевых контактов. Каждый ряд кардиомиоцитов покрыт базальной пластинкой и прослойкой соединительной ткани, в которой проходят кровеносные капилляры и нервные волокна. Эти одинарные ряды кардиомиоцитов раньше назывались “волокнами Пуркинье”.

Проводящие кардиомиоциты образуют атипичную мускулатуру миокарда, которая обеспечивает распространение волны сокращения. От рабочих клеток они отличаются высоким содержанием гликогена и лизосом, сниженным числом митохондрий и миофибрилл. В них отсутствуют каналы Т-системы, но клетки хорошо иннервированы. Благодаря проводящей системе сердце обладает способностью к автономным сокращениям, а нервная система регулирует только их интенсивность и частоту. Исходная частота сердечных сокращений задается водителем ритма сердца, затем волна сокращения распространяется с предсердий на желудочки. В проводящуюсистемусердца входят синусо-предсердный узел Кис-Фляка, предсердно-желудочковый узел Ашофф-Тавара и предсердно-желудочковый пучок Гисса.

Эндокринные (секреторные) сердечные мышечные клеткирасположены в предсердиях. Они отличаются звездчатой формой и малым числом миофибрилл. В цитоплазме секреторных кардиомиоцитов обнаруживаются гранулы диаметром 200-300 нм, которые содержат предсердный натрийуретический пептид (ПНП). Этот регулятор улучшает условия работы миокарда при высоких нагрузках, вызывая усиленное выведение натрия и воды с мочой, а также расширяя сосуды и снижая артериальное давление.

Гладкая мышечная ткань

Гладкая мышечная ткань образует мышечные оболочки сосудов, стенки желудка, кишечника, мочевого пузыря, матки и многих других органов. Структурной единицей этого типа мышечных тканей является гладкая мышечная клетка.

Гладкая мышечная клетка имеет веретеновидную форму. Длина ее составляет от 20 до 500 мкм, диаметр 1-20 мкм. В цитоплазме обнаруживаются тонкие актиновые и толстые миозиновые нити, которые, однако, не образуют упорядоченных структур. Поэтому гладкая мускулатура не обладают поперечной исчерченностью. Тонкие актиновые протофибриллы прикреплены к плазмолемме и мембранам плазматической сети и ориентированы вдоль оси клетки.

Ядро у гладкой мышечной клетки одно, располагается в центре. В цитоплазме кроме протофибрилл содержатся в большом количестве мелкие пузырьки с кальцием, которые выполняют функции саркоплазматической сети. Кроме того, имеются митохондрии, пластинчатый комплекс, включения гликогена и другие органоиды.

Снаружи гладкая мышечная клетка покрыта базальной пластинкой, к которой прикреплены нити коллагеновых и ретикулярных волокон. Эти клетки часто формируют группы, окруженные соединительнотканной оболочкой с сосудами и нервами.

Гистогенез мышечных тканей

Скелетная (соматическая) мускулатураобразуется из миотомов сегментированной мезодермы. Миотомы состоят из удлиненных клеток – миобластов, которые способны делиться митозом. Во время эмбриогенеза миобласты сначала мигрируют в диффузную мезодерму – мезенхиму, где они образуют закладки будущих мышц. Затем они выстраиваются в цепочки и сливаются друг с другом, формируя миотубы.Некоторая часть миобластов сохраняется в малодифференцированном состоянии в виде миосателлитов. Дифференцировка миотуб сопровождается их ростом, ядра при этом выстраиваются цепочкой по центру симпласта, а в цитоплазме появляются тонкие и толстые протофибриллы. По мере роста миотуб расположение протофибрилл постепенно становится упорядоченным. При этом происходит перемещение ядер на периферию, а их место занимают формирующиеся миофибриллы. Одновременно из многочисленных мелких пузырьков создается саркоплазматическая сеть. Такая реорганизация саркоплазмы означает переход миотуб в незрелые мионы. Дальнейший рост миона обеспечивается как делением его ядер, так и слиянием с ним миосателлитов. Созревание миона заканчивается дифференцировкой структурных элементов саркомеров.

Физиологическая и репаративная регенерация мышечных волокон в целом напоминает их гистогенез. Она обеспечивается главным образом миобластами, которые образуются из миосателлитов.

Сердцезакладывается в виде двух симметрично расположенных сосудов мезенхимального происхождения. Затем эти сосуды сливаются вместе и обрастают участком висцерального листка спланхнотома – миоэпикардиальной пластинкой. Миокард образуется из внутренней части миоэпикардиальной пластинки.

При формировании миокарда клетки мезодермы постоянно пролиферируют, хотя величина пролиферативного пула постепенно снижается, а длительность клеточного цикла увеличивается. Некоторые клетки при этом становятся полиплоидными. Одновременно наблюдаетсмя удлинение клеток, в их цитоплазме появляются миофибриллы. По мере дифференцировки миокарда формируются вставочные диски и другие типы межклеточных контактов. Из клеток мезенхимы образуются соединительнотканные прослойки между кардиомиоцитами, в которые врастают сосуды и нервы.

Регенерация миокарда при инфаркте осуществляется лишь частично. В поврежденном участке возникает рубец из соединительной ткани, а сохранившиеся поблизости кардиомиоциты делятся митозом или подвергаются гипертрофии.

Гладкая мускулатура развивается из мезенхимы. При этом звездчатые мезенхимальные клетки удлиняются, в их цитоплазме появляются протофибриллы. Постепенно клетки приобретают способность к сокращению. Гладкая мускулатура способна к регенерации путем размножения и гипертрофии зрелых клеток, а также за счет дифференцировки клеток-предшественниц

НЕРВНАЯ ТКАНЬ

Нервная ткань образует нервную систему, которая наряду с эндокринной и иммунной обеспечивает регуляцию деятельности клеток во всем организме. Функции нервной системы состоят в получении, хранении и обработке информации из внешней средыи внутренних органов, а также выработке управляющих сигналов для координации работы физиологических систем.

По расположению нервная система подразделяется на центральнуюи периферическую, а по характеру передаваемых ею сигналов - на соматическую (произвольные действия) и вегетативную (непроизвольные действия).

Клетки нервной ткани

Нервная ткань построена исключительно из клеток, межклеточного вещества у нее почти нет. Клетки нервной ткани подразделяются на два типа – нейроны (нейроциты) и глиоциты (нейроглия). Нейроны способны генерировать и проводить нервные импульсы, тогда как нейроглия обеспечивает вспомогательные функции. Нервная ткань имеет эктодермальное происхождение, достаточно рано обособляясь в эмбриогенезе в виде нервной трубки.

Нейроны представляют собой крупные отростчатые клетки, причем многие из них полиплоидные. Тело нейрона называется перикарионом. Он содержит крупное округлое ядро с мелкодисперсным хроматином и 1-2 ядрышка. В цитоплазме (нейроплазме) имеются многочисленные митохондрии и пластинчатый комплекс диффузного типа с множеством диктиосом, окружающих ядро. В нейроплазме при специальных методах окрашивания обнаруживаются два вида структур, характерных только для нейронов – тигроид (вещество Ниссля) и нейрофибриллы.

В световом микроскопе тигроид наблюдается в виде базофильных пятен различного размера и плотности, заполняющих перикарион. При использовании электронного микроскопа становится очевидным, что на ультраструктурном уровне тигроид состоит из уплощенных цистерн гранулярной плазматической сети. К цистернам с наружной стороны прикреплены многочисленные рибосомы. Наличие подобных структур в нейроне свидетельствует об интенсивном синтезе белков. Нейрофибриллы выявляются в нейронах после обработки солями серебра. Они образованы промежуточными филаментами (нейрофиламентами) и микротрубочками. Нейрофибриллы в отличие от тигроида находятся не только в перикарионе, но и в отростках. Эти структуры формируют в нейроне мощную систему внутриклеточного транспорта, обеспечивающего перемещение везикул на периферию отростков (антероградный транспорт) и обратно (ретроградный транспорт). Специфическим моторным белком в этом транспорте служит аналог динеинакинезин.

Нейроны классифицируют по числу отростков на униполярные, псевдоуниполярные, биполярные и мультиполярные. У человека наиболее часто встречаются биполярные нейроны - клетки с двумя отростками.

Отростки у нейронов бывают двух видов – аксоны и дендриты. Аксон (нейрит) в нейронах позвоночных всегда один. Он начинается в перикарионе с небольшого расширения, которое называется аксональным холмиком. Его легко отличить от остальной части перикариона по отсутствию тигроида. Аксон не ветвится и может достигать длины до 1,5 м. В цитоплазме аксона имеются многочисленные микротрубочки, канальцы гладкой плазматической сети, митохондрии и мелкие пузырьки. В области аксонального холмика возникает нервный импульс, который движется на периферию аксона. Поэтому аксоны называются двигательными (центробежными,илиэфферентными) отростками. В физическом плане нервный импульс представляет собой волну деполяризации плазмолеммы нейрона (потенциал действия). Дендриты отличаются от аксонов способностью ветвиться, а также наличием боковых выступов – шипиков. Последние представляют собой выступы плазмолеммы дендрита, которые содержат систему плоских цистерн и мембран, ориентированных перпендикулярно поверхности. Шипики участвуют в формировании межнейронных контактов, но, какие при этом они выполняют функции, остается неизвестным. Дендритов в нейроне может быть несколько. Этот вид отростков способен генерировать нервный импульс на периферии и проводить его к перикариону. Поэтому дендриты называются чувствительными (центростремительными,илиафферентными) отростками. Нейроны с помощью аксонов и дендритов связаны в нервной системе в сложные сетевые структуры, которые могут с высокой скоростью обрабатывать большие объемы информации.

В нервной системе встречаются также особые нейроны, которые называются нейросекреторными клетками. Секретируемые ими пептиды синтезируются в перикарионе тигроидом и оформляются пластинчатым комплексом в секреторные гранулы, которые перемещаются по аксону на периферию. Концевые разветвления аксонов нейросекреторных клеток, заканчивающиеся на базальной пластинке капилляров, выделяют эти гормоны в кровь.

У человека нейросекреторные клетки сконцентрированы в гипоталамусе, где их перикарионы образуют супраоптическое и паравентрикулярное ядра. В гипоталамусе происходит секреция либеринов и статинов – пептидных гормонов, которые контролируют аденогипофиз. Аксоны нейросекреторных клеток гипоталамуса направляются в заднюю и промежуточную доли гипофиза, где они выделяют ряд других гормонов.

В отличие от нейронов глиальные клетки нервной ткани не способны генерировать и проводить нервные импульсы. Однако они не менее важны для нормальной работы нервной системы, выполняя такие функции как опорная, изолирующая, разграничительная, трофическая, гомеостатическая, репаративная и защитная.